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Quantum-Statistical Kinetic Equations 

D. Loss ~ and H. Schoeller 1 

Received November 7, 1988 

Considering a homogeneous normal quantum fluid consisting of identical inter- 
acting fermions or bosons, we derive an exact quantum-statistical generalized 
kinetic equation with a collision operator given as explicit cluster series where 
exchange effects are included through renormalized Liouville operators. This 
new result is obtained by applying a recently developed superoperator for- 
malism (Liouville operators, cluster expansions, symmetrized projectors, Pq- 
rule, etc.) to nonequilibrium systems described by a density operator p(t) which 
obeys the von Neumann equation. By means of this formalism a factorization 
theorem is proven (being essential for obtaining closed equations), and partial 
resummations (leading to renormalized quantities) are performed. As an 
illustrative application, the quantum-statistical versions (including exchange 
effects due to Fermi-Dirac or Bose-Einstein statistics) of the homogeneous 
Boltzmann (binary collisions) and Choh-Uhlenbeck (triple collisions) equations 
are derived. 

KEY WORDS: Kinetic equations; exchange effects; renormalized cluster 
series; quantum-statistical Boltzmann and Choh-Uhlenbeck equations. 

1. I N T R O D U C T I O N  

Nonequi l ibr ium cluster expansion techniques have been a useful tool for 
the microscopic analysis of  the N-body  dynamics of  classical fluids. Based 
on these techniques, generalized kinetic equations can be derived from 
which, for instance, the Bol tzmann equat ion and its first correction, the 
C h o h - U h l e n b e c k  equation, are obtained in a systematic approximat ion  
procedure  (see, e.g., refs. 1-4). Other  examples, successfully studied in 
kinetic theory by means of  cluster expansions, are the well-known long- 
time tails of  equilibrium time correlat ion functions, (4-6) the nonanalyt ic  
density dependence o f  t ranspor t  coefficients, (7'8) the divergence of Burnett  
coefficients, (9,m) etc. (see also ref. 11, especially for a bibliography).  
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Motivated by the progress made in this area of statistical mechanics 
we have started, in ref. 12 (hereafter referred to as I), the development of 
a new formalism directed at generalizing the methods of classical kinetic 
theory, in particular nonequilibrium cluster expansion techniques, to 
normal quantum fluids. (For other studies with a similar objective see, e.g., 
refs. 13-19.) There, we were concerned with the microscopic evaluation of 
the momentum autocorrelation function in semiclassical systems of N iden- 
tical particles interacting pairwise via a translationally invariant short- 
range repulsive potential (with no bound states). By semiclassical we mean 
here that the system is described quantum mechanically, whereas the par- 
ticles obey classical Boltzmann statistics. It turned out that the autocorrela- 
tion function has the same long-time tail in this case as in classical hard- 
sphere systems. 15"2~ This analysis was based on the superoperator for- 
malism, in particular on Liouville operators and projectors, and on a new 
concept, the Pq-rule and Pc-singularity (the latter being a generalization of 
van Hove's diagonal singularity(21'22)), by the help of which the various 
terms occurring in the nonequilibrium cluster expansion could be discussed 
systematically in the thermodynamic and long-time limit. 

This investigation, however, was restricted to the semiclassical regime 
and does therefore not apply to low-temperature systems, because in this 
case exchange (degeneracy) effects due to Fermi-Dirac (FD) or Bose- 
Einstein (BE) statistics are not negligible. 

In a subsequent work ~23/ (hereafter referred to as II), also concerned 
with the evaluation of equililbrium time correlation functions, we extended 
our semiclassical formalism to the quantum-statistical case. The main result 
in this investigation is a general formula [see (II.3.44)] from which, as a 
first application, the well-known (17) quantum-statistical Boltzmann equa- 
tion value of time-integrated correlation functions (with exchange-modified 
scattering cross section) is obtained microscopically. This general formula 
may then also serve, e.g., as a suitable starting point for the determination 
of the long-time tails of correlation functions at low temperatures. This, 
however, will not be done here, although the renormalized cluster series 
found in the present work might be of great use in such an investigation. 

The objective of the present paper is to derive a new exact generalized 
kinetic equation for homogeneous (i.e., spatially uniform) nonequilibrium 
quantum fluids (such as, e.g., normal 3He or 4He) consisting of N interact- 
ing fermions or bosons. By a straightforward and systematic approxima- 
tion procedure, we then obtain here the quantum-statistical version of the 
homogeneous nonlinear Boltzmann equation (with exchange modified, 
time-dependent scattering cross section) in the binary collision approxima- 
tion. This known result was first derived by Boercker and Dufty (16~ 
in a semiphenomenological approach based on the quantum BBGKY 
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hierarchy. Moreover, in the triple collision approximation we obtain the 
quantum-statistical version of the classical (24) or semiclassical t25 27) Choh-  
Uhlenbeck equation, a result which we believe to be new. 

For a first orientation without any technical details let us now sketch 
the main line we follow in deriving the above-mentioned generalized kinetic 
equation. By kinetic equation we mean, as usual, a closed nonlinear 
integrodifferential equation describing the time evolution of the one-par- 
ticle reduced distribution operator p~(t). The starting point of our discus- 
sion is the von Neumann equation for the density matrix p(t) describing the 
time evolution of the nonequilibrium system under consideration. Making 
use of the technical tools (superoperators, symmetrized projectors, Pq-rule, 
etc.) introduced and discussed in I and II, and performing cluster expan- 
sions, we readily obtain the time derivative of the one-particle reduced 
distribution operator t51(t) expressed as some functional of the diagonal 
part (in the momentum eigenstates) of the s-particle reduced distribution 
operators p1 .... Pl . . . . .  ( t ) .  Now, under certain conditions on the initial 
distribution a factorization theorem will be proven, which says that this 
diagonal part of pl .... (t) factorizes exactly in the thermodynamic limit and 
can be replaced by the product pl( t ) . . .ps( t ) .  Thereby we obtain a closed 
equation for p~(t) where only one-particle distribution operators pi(t) 
occur. In passing, we note that analogous forms of this factorization 
theorem were derived and used in the evaluation of equilibrium time 
correlation functions in I and II. In classical or semiclassical systems the 
thus obtained equation would already represent the desired result. 
However, in the quantum-statistical case considered here, exact partial 
resummations of the cluster series can be performed leading to a renor- 
malized generalized kinetic equation [see Eq. (4.2)] where many-body 
effects due to FD or BE statistics are incorporated explicitly through 
renormalized Liouville operators being now linear functionals of pi(t). This 
exact equation, which is given as a cluster series of very similar structure 
as its (semi-) classical counterpart, represents then the main result of our 
general discussion, from which the quantum-statistical versions of the 
Boltzmann and Choh-Uhlenbeck equations are straightforwardly obtained 
in the Markovian limit. 

The paper is organized in the following way. In Section 2, besides 
introducing some basic definitions, we establish the above-mentioned cen- 
tral factorization theorem. Thereby we make use of nonequilibrium cluster 
expansions and the Pq-rule discussed in I. In Section 3 we start the actual 
derivation of the generalized kinetic equation. We perform there a non- 
equilibrium cluster expansion of the Laplace transform of the dynamical 
factor (e + iL) ~ (L is the Liouville operator) and decompose the resulting 
cluster expressions into their diagonal and nondiagonal parts with the help 
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of symmetrized projectors. Then, inserting the factorization theorem, we 
arrive at a closed equation for 01(0. In Section 4 we perform partial resum- 
mations which lead to the exact renormalized generalized kinetic equation. 
In Section 5 we consider the binary collision and Markovian approxima- 
tions of this equation which yield the quantum-statistical version of the 
homogeneous Boltzmann equation. In Section 6 we derive the quantum- 
statistical version of the Choh-Uhlenbeck equation by retaining binary and 
triple collision terms, including the first time retardation correction to the 
Markovian approximation. We also discuss there the semiclassical limit of 
this equation, thereby obtaining the semiclassical triple collision operator 
discussed by R6sibois (25) within the Brussels formalism. (13) 

2. F A C T O R I Z A T I O N  T H E O R E M  

In this section, introducing some basic definitions and concepts, we 
establish a factorization theorem for the reduced nonequilibrium density 
operator which will be essential for the derivation of the generalized kinetic 
equations discussed in the next sections. For an instructive heuristic discus- 
sion of the factorization problem in classical systems see, e.g., ref. 4, p. 216. 

We consider a homogeneous quantum-statistical system of N identical 
fermions or bosons of mass m in a periodicity volume Q, which interact via 
a short-range two-body potential with an arbitrarily strongly repulsive core 
and with no bound states. Denoting by Pi the momentum operator of the 
ith particle, the Hamiltonian operator for this system is given as 

H = H o +  V= ~mm + ~ V o. (2.1) 
i =  1 i < j  

with Vo= V(]xi-xj] ). The quantity of central interest here is the nor- 
malized density operator p(t),  which specifies the statistical state of the 
nonequilibrium system at time t. Its time evolution is governed by the 
von Neumann equation (we set h = 1) 

0 
Ot p(t)  = - i L p ( t )  (2.2) 

L is the Liouville operator, 2 defined by 

LA = [H, A] (2.3a) 

2 The Liouville operator belongs to the class of superoperators (41) which are formally defined 
as linear operators acting on ordinary Hilbert-space operators. 
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where here and in the following A denotes an ordinary Hilbert-space 
operator. Analogously, one defines 

LoA = [Ho, A] (2.3b) 

L v A  = [V, A] (2.3c) 

and 

LoA = [V o, A] (2.3d) 

The solution of Eq. (2.2) reads 

p(t) = e--iL(' romp(to), t > to (2.4) 

The quantum-statistical expectation value of any observable A at time 
t is then given by 

( A ) ,  = Tr Ap(t)  (2.5) 

where the trace Tr is to be taken over a complete orthonormal set of 
(anti-) symmetrized states. They may be chosen as eigenstates of the total 
momentum and are of the form 

U[ ~1/2 Tg]k, ...RN > (2.6) 
I ] f n i ! ]  

Here, 

I k , . . . k N ) = l k , )  x ... X l k N ) - ~ l k  ) (2.7) 

is the direct product of single-particle momentum eigenstates; 7r denotes the 
projecting operator which (anti-) symmetrizes the product states: 

1 1 
7[. = - " ~  )T  I " " N ~ - -  

N ! ~  ~ o ~  S~v 

re,, Ik ) = ql< jkol~ . . . k,~u~ ) 

{21 for even permutations 
l al = for odd permutations 

1 for bosons 
r/= - 1 for fermions 

(2.8) 

(2.9) 

The sum in (2.8) runs over all permutations ~ of N indices, ni indicates the 
number of identical k-vectors of type i. Since the state (2.6) remains 
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unchanged (apar t  f rom the sign in the fermionic case) under  a pe rmuta t ion  
of the vectors ki, only those states of the form (2.6) need to be considered 
in Eq. (2.5) whose sets {kl,..., kN} are different. Therefore  Eq. (2.5) reads 

N~ 
( A ) , =  ~ - -  ( k j ~ A p ( t ) ~ l k )  

{k~,..., kN~ ]--[i nj! 

= Y, ( k ] ~ A p ( t ) ~ l k )  (2.10) 
kl,..., kN 

Since the physical  quanti t ies A and p( t )  are symmetr ic  operators ,  one has 

~ A p (  t )~  = A p (  t )7~Tz = A p (  t )~  (2.11 ) 

and hence 

( A  ) , =  T r l . . . N  Ap ( t ) r t  (2.12) 

where Tr l  ...N ~ Trl  .-. Tr~v denotes the trace for Bol tzmann  statistics. 
If  A now consists of a sum of s-particle operators ,  i.e., 

A = y,  Ai~ ...,, (2.13) 
l~<i l<  ... <is<~N 

it follows f rom Eq. (2.6) that  

where 

1 
~ " < , A / , = _ T r l  . . . .  A I  ..... .Pl  .... (t) 

s l  
(2.14) 

N~ 
Pl .... (t) = - -  Trs+ 1 . - - N  D ( t )  ']'{ (2.15) 

( N - - s ) !  

is the reduced s-particle density opera to r  at t ime t. The symmetr iza t ion  
implicit in Pl .... (t) becomes more  evident by noticing that  

I _ ~ L  . . s  t P, ..... ( t ) - s !  ' Pl . . . .  ( ) (2.16) 

This relat ion follows immediate ly  f rom the "cluster" representat ion 

1 g l  
~ = ~ . ~  .... ( l + r r l s + l +  "'" + T t s s + l ) ' " ( 1  + n i x +  "'" +rt~v ,u) (2.17) 

and (~1 .... )2 = s! rt ~ ..... . Now,  at the initial t ime t = to, Pl .... (to) is assumed 
to factorize (up to correlat ions due to F D  or BE statistics) as follows: 

p ,  . . . .  ( to) = rt' ...... p , (  to) . . . p , (  to) (2.18) 
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Here, 
~1 .... = (1 +rc12)(1 +rc13 +~23). . .(1 +rcL~. + ... +7c5_1,) 

takes care of the correct symmetry property of the initial statistical state of 
the fermion or boson system [note that Eq. (2.18) is consistent with 
Eq. (2.16)]. However, initial correlations due to particle interactions are 
neglected in this way. In the following we will consider such systems for 
which the factorization assumption (2.18) is possible. 

This product form in Eq. (2.18), which will be used as initial condition 
in the derivation of generalized kinetic equations in the next sections, is in 
general not maintained for times t > to. However, for the diagonal part of 
Pl .... (t) the following central factorization theorem holds true in the ther- 
modynamic limit (i.e., s N---, oe, with N / O = n  finite): 

Pt .... Pl ..... ( t ) = P l P , ( t ) " ' P ~ P , ( t )  forall t>>-to (2.19) 

Here p1 ..... = p ~  . . . p s  denotes the superoperator which projects on the 
diagonal part of an ordinary operator; explicitly, 

(PI .... P, .... (t))k~k'.,'-- ( k~ IP  ' .... P~ ..... (t) l k ' ' )  

= ( D 1  . . . .  ( t ) ) k S k ~  6 k l k l  �9 - �9 (~ksk ,  ~ (2.20) 

with kS= (kx,..., k,). The P' on the rhs of Eq. (2.19) can actually be omitted 
here, since for the considered homogeneous system Pipi(t  ) = pi(t).  

We note that in ref. 13, Chapter 19, a similar factorization theorem 
(proven (2sl within the Brussels formalism) is discussed and used in deriving 
generalized kinetic equations. Furthermore, we note that in I and II [see 
Eqs. (1.3.58) and (II.3.42)] analogous forms of Eq. (2.19) have been derived 
in connection with the evaluation of equilibrium time correlation functions. 
The following proof is therefore analogous to those in I and II. 

To begin with the proof of formula (2.19), we insert Eq. (2.4) into 
Eq. (2.15) and by using (Lp)Tr = L(pzc) we obtain 

N! 
p1 . . . .  P l  . . . .  ( t ) = - - Y r s + l . , . u P e - i L ( t - ~ ~  ~z (2.21) 

(N-s)! 

with P =  p1...N 
Next we decompose exp[ - iL(1  . . . N ) [ ]  [L=_L(1 . . .N), [=  t -  to] 

into the following cluster series, for all N =  1, 2,...: 

e JLt~t'-=e-ZC~ U(1) 

e -'cl'2)e--= U(12)+ U(1) U(2) 

e ,L~,23);= U(123)+ U(12) U(3)+ U(13) U(2) 

+ U(23) U(1)+ U(1) U(2) U(3) 



182 Loss and Schoeller 

etc. For  arbi t rary  N this may  be writ ten as 

N 

e ,c ,= y ,  ~ U( I1 ) . . .  U(I,) (2.22) 
l = 1  l b . . . , l  ! 

where I l W  . . .  w i t =  {1,..., N}, I i c ~ I j = ~  for i t  j ,  and U ( ~ ) -  = 1. Insert-  
ing (2.22) into Eq. (2.21), we see that  all clusters U(i), 1 <<. i ~  N, yield 1, 
since, with P L  o = O, 

U U ( i )  = U (2.23) 

Let  us now consider the following three typical cases which occur in 
Eq. (2.21) after insert ion of (2.22): 

N! 
- -  ( N - s ) ( N - s  - 1) Trs + 1...x PU(s  + 1, s + 2) p(to)7~ 
( N - s ) !  

= Trs+ 1,s+2 P1 .... +2 U(s + 1, s + 2) pl  ...... + 2(to) (2.24) 

N! 
- -  ( N -  s ) ( N -  s - 1 ) Tr ,  + 1... N PU(1, s + 1, s + 2) p(to)TZ 
(N-s)! 

= T G +  1,~+2 P1 ..... +2 U(1, s + 1, s + 2) Pl .... + 2(to) (2.25) 

and 

N! 

= T r ,+  1 , s + 2  P 1  . . . .  + 2 U(1, 2, s + 1, s + 2) P l  . . . .  + 2 ( t 0 )  

- -  ( N - s ) ( N - s -  1 ) T r , + l . . . u  PU(1,  2, s +  1, s +  2) p(to)~ 
( N - s ) !  

(2.26) 

Tr, ,  e iL(l')tA = Tr, ,  e- iH( l ' ) tAe  iH(l')t= T r r A  (2.28) 

Therefore,  the clusters U have to contain  at least one index f rom the set 
{ 1,..., s}. However ,  if they contain  two or more  different indices f rom this 
set, the cor responding  terms become negligible in the t he rmodynamic  limit, 
as can be easily verified with the help of the Pq-rule established in I. 
Explicitly, we find for the third case, i.e., (2.26), 

Trs+ l.s+ 2 p l  ..... +" U(1, 2, s + 1, s + 2) . . . .  s -1 
~..f. 

~.t'2 2 ~ f 2 - 3  

(2,29) 

as can be seen by expressing U(I) in terms of e x p [ - i L ( I ' ) [ ]  [ inver t  the 
cluster expansion (2.22)] and then by using the fact that  

T r ,  U(I )A  = 0 (2.27) 

The first case yields zero, since 
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Consequent ly ,  each cluster U(I) must  contain  one and only one index f rom 
the set { 1,..., s} [as  is the case in (2.25)], and it follows that  

p t  .... Pl .... (t) 

= ~ Trs+~ .... + r P  I .... + rU( l I1 )  "'" U(SIs) J01 . . . .  +r(t0) 
r l , . . . , r s  

0 

for .Q --+ oc (2.30) 

with 

I i 

and 

= { ~ 5 + r l +  . . .  +r~_,+l,...,s+r2+-.. + r , }  for r i )  1 
(2.31) 

otherwise 

r =  ~ r i (2.32) 

Next we decompose  pl...k(to), analogously  to e iLi, into the following 
cluster series: 

k 

Pl...k(to)-= ~ ~ g(Ii).., g(Ik) (2.33) 
l =  I l b . . . , l k  

Making  use of the fact that, according to Eq. (2.18), g(1) also possesses the 
cluster proper ty ,  it then follows with the same a rgument  as above  that  in 
Eq. (2.30) the clusters g(I), which connect  any indices from {1 ..... s} [e.g., 
g(12)] ,  or U(1,s+l)U(2, s+2)g(s+l, s + 2 ) ,  can be omit ted in the 
t he rmodynamic  limit. Hence,  Eq. (2.30) reduces to 

p1 ...... p ,  .... (t) 

p t  .... +~ V(lI1)  �9 .- U(sI~) = Trs+ l ...~.+ r 
r I ...., r s 

0 

• pl i~( to)""psl , ( to)  

i=t r=o(N-r-1) !Trx-iU(is+l"''s+r)p(t~ 

for Q ~ o c  

where Eq. (2.15) has been used in the last step. 

(2.34) 



184 Loss and Schoeller 

From Eqs. (2.22), (2.23), and (2.28) it now follows that 

p1 .... Pl .... (t) 

= ( l  P i N T r N - i ( e x p { - i ( t -  t o ) [ L ( 1 - . @ . . . s ) + L ( i s +  1 . . . N ) ] } )  
i = 1  

x p(to) ~ (2.35) 

Since in each factor of the last equation the indices 1,..., s are distinguished 
and therefore cannot produce N factors, we may replace the dynamical 
superoperators by e -iEct-t~ in the thermodynamic limit. Thus, with 
Eq. (2.15), we finally arrive at the desired result, the factorization theorem 
(2.19), which accomplishes the proof. 

We note that, according to the above proof, Eq. (2.19) is still valid for 
the more general case, where the initial value Pl . . . .  (to) can be written as 
a cluster series of the form (2.33) [and not only as an (anti-) symmetrized 
product of one-particle operators as we have assumed in Eq. (2.18)]. 

Finally, we would like to emphasize the facts that formula (2.19) is 
valid for all times t ~> to (with to finite) and that this factorization theorem 
should not be confused with Bogoliubov's functional assumption, ~29) accor- 
ding to which the higher-order reduced density operators are determined as 
explicitly time-independent functionals of p~(t) in the limit t o ~ - ~ .  The 
only limit necessary in the above proof is the thermodynamic limit, which 
allows us to omit corrections of the relative order (2 -~ (and smaller). 

3. C L O S E D  E Q U A T I O N  FOR P l ( t )  

We now start the actual derivation of a generalized kinetic equation 
for a homogeneous system consisting of N identical interacting fermions or 
bosons. 

In this section, as a first step toward this aim, we expand the resolvent 
(~+ iL) -1 occurring in the Laplace transform of p~(t) into an explicit 
cluster series by a simple iteration procedure. Then, making use of the fac- 
torization theorem established in the foregoing section, we obtain a closed 
integrodifferential equation for p~(t), where only one-particle density 
operators pi(t)  occur. 

If we considered a system of distinguishable particles obeying classical, 
i.e., Boltzmann statistics, this closed equation would be almost the final 
result, from which kinetic equations, such as the Boltzmann or Choh-  
Uhlenbeck equations, could immediately be obtained. However, in the 
quantum-statistical case considered here, the action of the (anti-) sym- 
metrizer rc complicates the situation in that a nontrivial resummation is 
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necessary in order to obtain the quantum-statistical generalization, e.g., of 
the Boltzmann and the Choh-Uhlenbeck equations. This resummation 
procedure will be discussed in the next section. 

To begin with, let us introduce the Laplace transform of Pl .... (t), 

P l  ..... (E) = dte e'tDl . . . .  (t), ~ - 0  (3.1) 

Choosing the initial time t o = 0 in Eq. (2.4), we obtain explicitly 

1 
P'/51(e) = N Tr2....~,P ~ p(O)u (3.2) 

Then applying the identity 

1 1 1 1 
Y - -  (3.3) 

X+ Y X X X+ Y 

to [e+i (Lo+Lw)]  -~, we find, with P L o = 0 ,  

~ p l ~ ( ~ )  _ plp~(O ) = A ~(~) 

with 

AI(e ) = - N ( N -  l)  Tr 2...~v P i L 1 2 - -  

where we have used that 

Tr i . . .~L(i . . .  k)A = 0 

(3.4) 

1 
p(o)~ (3.5) 

~+iL  

(3.6) 

Our aim now is to obtain an explicit cluster series for the dynamical 
factor occurring in AI(e ). Before doing so, let us remark that we are 
ultimately interested in the small-e behavior of A l(e) (see Sections 5 and 6). 
However, as discussed in I and II, a naive cluster expansion of the resol- 
vent (e + iL) i does not work in this case, since the resulting cluster series 
diverges term by term as e ~ 0  due to the occurrence of van Hove's 
diagonal singularities (211 (for details we refer to I and II). As shown in II, 
this divergence difficulty can be removed by the help of the following 
symmetrized s-particle diagonal and nondiagonal projectors: 

/5l ..... = ~ rt~p1 ..... ~t 1, Q1 .... = l - P 1  .... (3.7) 
o-eSs 

uo is defined in Eq. (2.9) and ~j-~ denotes its inverse. In matrix notation 
this reads 

(/51 .... A)k~, = Ak~, ~ 6k,,~(k,,l = Akk' 6{k~}. {k"t (3.8) 
a~Ss  

822/'56/1-2-13 
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Here a(k")=(k,~) ..... k~,/) and 6{ks},{k,s } equals 1 if the sets 
{k ~} -= {kl,..., ks} and (k 's} are equal and 0 otherwise. The last equality 
sign in Eq. (3.88) holds only for s < N. ~23) 

The reason for introducing these projectors is that in a term of the 
form Lv[e + iL(1.., s)] -~ (as it occurs in a cluster or perturbation expan- 
sion) the most divergent term as e--* 0 can easily be extracted by the help 
of Eq. (3.3) and Lo(1 . . - s ) / ~  .... =0:  

1 ILvll 1 ] 
Lve+iL(1 ...s)=-a a+iL(1  ...s) iLv(1 ...s) pl .... 

1 
+LYe+ iL(1..-s) (~1 .... (3.9) 

where, in a given perturbation order [with respect to Lv(1 . . -s)] ,  the 
second term always possesses an e ~ factor less than the first term due to 
the effect of 01 .... (23) 

After these remarks let us return to Eq. (3.5) and begin with the 
cluster expansion. The following iteration procedure is an alternative but 
equivalent method to the derivations given in I and II [see, e.g., (II.3.17)- 
(II.3.25)]. Its main feature is that only s-particle projectors pl  ..... and 
(~1 .... will occur and that therefore the explicit representation of the 
N-particle version of pl  ..... is not needed. This might be advantageous 
especially if projectors are used (e.g., in inhomogeneous systems), which are 
more complicated than the diagonal projector P~ .... considered in the 
present work. 

Now, in a first step, by using Eq. (3.3) and p~2+ (~12= 1, we write 
identically 

e+iL e + iL(12) + 1- i[L-L(12)]- - -~l  L (3.10) 

which, inserted into Eq. (3.5), leads to 

N~ 
A1(5)- - -  Tr2...N PiLl2 

( N - Z ) !  

N~ 
- -  Tr2  ..-N PiLl2 
( N - Z ) !  

N! 
+ - -  T r 2 . . .  N PiLl2 

( N -  3)! 

for f 2 ~ o o  

1 

e + iL(12) 

1 

+ iL(12) 

1 

e + iL(12) 

P l z (1 - iLve~ lL)  P(O) ~ 

Q~2p(O)~ 

1 
O'~i(L~ + L~) ~ p(O)~ 

(3.11) 
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Here we have used Eq.(3.6) and the fact that P 3 N [ L - L ( 1 2 ) ] =  
P3N(L , , -L12) .  Furthermore, we have omitted the term L~2[e+iL(12)] 
P~2Lt2, since it is of negligible order in g2 in the thermodynamic limit due 
to our Pq-rule. (~2) 

In a second step we replace the resolvent (5 + iL) -~ occurring in the 
last term of the foregoing equation by 

e + iL(123) 
(/t~123 _~ 0 5 2 3 )  { 1  - -  i[L 1} 

v - L v ( 1 2 3 ) ] ~  (3.12) 

which, with Eq. (3.6) and the Pq-rule, reduces to 

1 p 1 2 3 [ l _ i L v  1 ] 1 0-123 
e + iL(123) ~ + i----L +~ + iL(123) 

N - 3  
e + iL(123) 

1 
0~23i(L~4 + L24 + L34 ) - -  (3.13) 

e+iL  

In a next step, one transforms the resolvent (e + iL) -~ occurring in the 
last term in (3.13) in a similar way. Iteration of this procedure yields the 
desired cluster series for the dynamical factor in A i" 

N ~  vc 
A,(e )=  ~ TH ..... p1 .... (~1 .... (e) pl  .... ~5~ .... (5) 

s = 2  
N ~ o ~  

+ ~ Tr2 ..... P1 ..... G1 .... (5) Q~ .... Pl ..... (0), Q ~ ve (3.14) 
s ~ 2 

where the s-particle superoperator G~ .... is given by 

1 1 
(~l ..... (5) = ( - 1) s-  l iL,2 O12i(L~3 + L23) 

+ iL(12) ~ + iL(123) 

1 e 
x �9 0.1 . . . . .  li(Lls + ... + L~_ls) 

e+iL, 1 . . . s -  1) e+iL(1 . . .s) '  

s~>2 (3.15) 

We note that G~ ..... is only essentially different from zero if the particles 
1,..., s are close together due to the assumed short-range nature of the inter- 
action) ~2'23) Therefore, Eq. (3.14) indeed represents a cluster expansion of 
the dynamical factor. We point out, however, that, due to the action of the 
(anti-) symmetrizer n, Eq. (3.14) does not yet represent a cluster expansion 
of the whole expression, as will be shown in the next section. 
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We also note that a further decomposition of G1 ..... with 
pl  . . .k+ 01 , . .k= 1 would not lead to new results, since the resulting/51 ...k_ 
contributions vanish in the thermodynamic limit due to the Pq-rule, (12) 

To obtain finally a closed equation for p~(t), we assume now that 
p~ .... (t) fulfills the initial condition (2.18). Thereby we exclude initial 
correlations due to the interaction; only statistical correlations due to FD 
or BE statistics are taken into account. Since, besides these statistical 
correlations, the situation here is very similar to the classical case, we refer 
the interested reader to ref. 4 for a physical interpretation of the initial 
condition assumed here. Since ~z~p~ .... ( t ) = p l  .... (t) for all ~ESs,  it then 
follows from the factorization theorem (2.19) that 

/51 . . . . .  0 1  . . . .  ( t )  = 7~ 1 . . . .  e I . . . .  p l  . . . .  (t) 

= ~ i  .... p l ( t ) . " p s ( t )  for Q --* oo (3.16) 

On the other hand, the inhomogeneous (i.e., second) term in Eq. (3.14) 
vanishes in this case, since then 

~)1 .... p~ .... ( 0 ) = 0  for ( 2 ~ o o  (3.17) 

Thus, transforming Eq. (3.4) back to time space and making use of Eqs. 
(3.14)-(3.17), one eventually gets 

lil(t) = dt' Tr2 .... Ht ...... ( t ' ) p ~ ( t - t ' ) . . . p , ( t - t ' )  for 
s = 2  

where the inverse Laplace transform HI .... (t) is given by 

1 f~ e~tP 1 ..... CJ ~ 1  .... p t  ..... g 1 . . . .  ( t )  ~ ~ i  d~ I ...... t , 

~ --} oO 

(3.18) 

(3.19) 

The contour 7 encircles the singularity ~ = 0 that arises in G1 .... (e). 
Equation (3.18) is a closed non-Markovian integrodifferential equa- 

tion for pl(t). It has been derived under the assumption that the initial 
condition (2.18) is fulfilled. We also note that this equation is formally 
exact in the thermodynamic limit and holds for all t > 0. 

As already remarked, in the case with Boltzmann statistics (i.e., if 7z is 
replaced by 1) Eq. (3.18) reduces to a generalized kinetic equation, from 
which the Boltzmann equation (i.e., s = 2 )  and the Choh-Uhlenbeck 
correction (i.e., s = 3 )  could easily be obtained in the Markovian 
approximation. Since these equations are special cases of the quantum- 
statistical equations derived below, this shall not be worked out here. 
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4. RESUMMATION AND QUANTUM-STATISTICAL 
CLUSTER SERIES 

We have already pointed out that the series occurring on the rhs of 
Eq. (3.18) does not yet represent a true cluster expansion. This means that 

Tr2 ..... H 1 ..... ( t ' )  p l ( t -  t ' )  . .. p ~ , ( t -  t ' )  

contains also contributions with less than s particles and not only s-particle 
clusters (as would be the case if ~z were replaced by 1). The ultimate reason 
for this is that in special cases the s-particle trace, Tr2...~,, can reduce to 
Tr 2 .... ,, with 2 ~<s'<s, due to the identity 

Tri rci/= Tr i ~0 = q (4.1) 

for the permutation operator ~z~ defined in Eq. (2.8) (r/equals 1 for bosons 
and - 1  for fermions). 

By making use of the foregoing identity we have shown in I1 how the 
two-particle contributions in G12, G123, etc., can be extracted and resum- 
reed exactly. As a result the exchange-modified t-matrix has been obtained. 
It is now possible to generalize this procedure, i.e., to extract the s-particle 
contributions in (71 ..... G~ .... +1, etc., and to resume them in a closed form. 
This then leads to a quantum-statistical renormalized cluster series where 
now the s-particle contributions are grouped together. The details of this 
resummation procedure are given in the Appendix. As result, we obtain the 
following exact generalized kinetic equation from Eq. (3.18): 

t ~ ( t )  = dt '  Tr2 .... / ~  .... (t'; t -  t ' )  p ~ ( t -  t ' ) . . ,  p , ( t -  t ' )  for s ~ oo 
,=2 (4.2) 

where 

2~zi -., de . . . .  d 1 s(e; t) P~ ' "  (4.3) 

Here, the new cluster superoperators G1 .... (e; t) are now functionals of the 
one-particle distribution operators p~( t )  ..... p s ( t )  and depend therefore also 
on the time t. Explicitly, one has (see Appendix) 

1 
d I .... (8; t ) =  ( - - 1 ) ' -  xi]~12 iQtZ(L~3 "~- L23 -1- L12,3) 

e + is t) 
1 x . . . i Q 1  . . . . .  1 

e + is t) 

x (/71s+ ... +/Ts_,,+ F~ /70,~.) 
l < ~ i < j ~ < s - - 1  

x - ( - 1 )  ~-I M~(e; t)  (4.4) 
e + is . . .s ;  t) 
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where the new Liouville operators are defined by 

/S,~2 A = L12(1 + 7z12)A (4.5) 

/~12,3 A ----- (7"~ 13 -t- 7"~23 ) V I z A  - -  A Vlz(g13 -t- g23) (4.6) 

Lt2(t)A=~[pl(t)+p2(t)] V~zA-qAVj2[p~(t)+p2(t)] (4.7) 

s = L~2 + L12(t) (4.8) 

/2(1-..s; t )=  Lo(l . . .s)  + ~ s (4.9) 
l ~ i < j < ~ s  

Ms(e; t) is defined as follows. Due to the identity 

Tr3 1-512.3p3(t)A L2 =/~2(t)A12 (4.10) 

which follows from Eq. (4.1), there are still contributions containing less 
than three particles in the first term on the rhs of (4.4) [when inserted into 
Eq. (4.2)]. These contributions, denoted by M,(e; t), must therefore be 
subtracted. For instance, one finds 

M2(~; t) = 0 

M3(g;  t) = i/~12 

(4.11) 

iQtZlL12.3 - -  (4.12) 
e + is t) e + i/2(12; t) 

etc. (Note that Q~2 in M3 can actually be omitted due to the Pq-rule.) 
If one compares G~ .... (e) [in particular, in the form given in the 

Appendix, (A.1)] with (~ ..... (e; t), one recognizes that both formulas have 
almost the same form [apart from M,(e;t)], only the resolvents 
[~+iL(1 . . -s ' ) ]  -L, 2<<,s'<~s, have been replaced by [~+is  . . . s ' ; t ) ]  -~ 
as a result of the resummation. This quantum-statistical Liouville operator 
/2(1 . . .s;t) can also be expressed by a generalized Hamilton operator, 
which, however, is no longer self-adjoint: 

s  ..-s; t)A =/~(1- . - s ;  t ) A - A f I  +(1 ..-s; t) (4.13) 

where 

/~(1 .-.s; t )=Ho(1  - . . s ) +  Su(t ) Vii (4.14) 
l<~i<j<~s 

with 

s u ( t )  = 1 + ~pi( t )  + . p j ( t )  (4.15) 
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It then follows that 

e/fs  ..... ;t)A = e  its'(1 .... ;')Ae i~n+ll ..... ;~) (4.16) 

These relations now show that, e.g., in a perturbation expansion of the rhs 
of Eq. (4.16), the occupation probability of the intermediate free particle 
states is modified by the weighting operator Sij(t). This weighting, in turn, 
is determined by the FD or BE statistics. We note here that Sa(t) also 
occurs in other formalisms, e.g., in the systematic diagrammatic perturba- 
tion method of ref. 19 or in the semiphenomenological approach of ref. 16 
[where also a further discussion of So.(t ) with further references can be 
found]. We might therefore consider H(1-- .s ;  t) [/2(1 . . - s ; t ) ]  a renor- 
malized s-particle Hamiltonian (Liouvillian), in which the influence of the 
other particles of the N-particle system via the statistics has been taken into 
account. In this sense, we might also say that the kinetic equation (4.2) 
together with (4.4) represents a renormalized integrodifferential equation 
for the one-particle distribution operator p~(t) of a homogeneous non- 
equilibrium system. This exact kinetic equation, being the main result of 
our general discussion, may now serve as starting point for the derivation 
of approximate kinetic equations, in particular, in the asymptotic time 
regime. It must be noted, however, that for a--, 0 further divergences 
(besides the eliminated first divergences) occur in d~ .... (e; t) for s>~ 4 (in 
three dimensions) due to the quantum-statistical analog of the well-known 
classical (3'7) or semiclassical (~2~ ring events. The question of whether these 
ring terms are the next leading divergences or whether there are equally or 
more singular terms (as one should expect from the discussion of the 
Lorentz gas 13~ needs further investigation and will not be treated here. In 
any case, the generalized kinetic equation (4.2) together with (4.4) are 
given in a form which is well appropriate for a further analysis with the 
help of binary collision and scattering length expansions. 

Finally, we remark that G~ .... can always be brought to a form in 
which the projector Q (P, resp.) no longer occurs. This is simply achieved 
by replacing all Q's by 1 -  P and by applying the Pq-rule to the resulting 
terms with P's (see the example G123 treated in Section 6). In this way, 
however, G1 ..... becoming a sum of different terms, loses its compact and 
transparent form. 

5. Q U A N T U M - S T A T I S T I C A L  B O L T Z M A N N  E Q U A T I O N  

As a first application of the general formalism presented in the 
preceding sections, we now derive the quantum-statistical generalization 
of the homogeneous Boltzmann equation in the binary collision and 
Markovian approximations. Thereby we obtain a Uehling-Uhlenbeck ~3~) 
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type equation with a scattering cross section, which, due to exchange 
effects, is now time-dependent through its functional dependence on the 
one-particle discributions P1(0 and pa(t). To arrive at this result we can 
proceed in close analogy to the derivation of the classical Boltzmann 
equation from generalized kinetic equations (see, e.g., ref. 4). 

In the binary collision approximation the generalized kinetic equation 
(4.2) reduces to 

f2 ~ j ( t ) =  dt 'Tr212112(t ' ; t - t ' )pl( t - t ' )p2(t- t  ') (5.1) 

Thereby all collisions involving only two particles are taken into account, 
including the many-particle correlations arising from exchange effects. 

Next we determine the asymptotic form of the foregoing equation, i.e., 
we consider times t large compared to a typical binary collision time re. In 
this case, Eq. (5.1) can be further simplified by assuming, in analogy to the 
classical case, that the kernel/4~2(z; t - t ' )  decays rapidly to zero for times 

larger than re.. We may then extend the upper limit of the time integral 
in Eq. (5.1) to infinity with negligible (or at least small) error and expand 
/~12(~; t -  t') and p i ( t -  t') around t as follows: 

/~12(z; t - t') = / l i e ( r ;  t ) -  t' ~ c~t/~2(r; t) + -.. (5.2) 

p i ( t -  r )  = o i ( t )  - r i , , ( t )  + . . .  ( 5 . 3 )  

Inserting these expansions into Eq. (5.1), we obtain 

~ ( t )  = lira Tr2 p12G,2(e; t) P~Zp,(t) pz(t) + ~ ke(t) (5.4) 
a ~ 0 +  k = l  

The first term on the rhs represents the Markovian approximation of 
Eq. (5.1). The corrections Rk(t), coming from the higher order terms in the 
expansions (5.2) and (5.3), describe the time retardation effects due to the 
finite duration of a collision and are of the order (re~t) k. In particular, one 
finds for/~l( t)  

/~l(t) = lim Tr23 G[2(e; t)[G13(a; t) + G23(a; t)] px(t) p2(t) p3(/) 
~ ; ~ 0  + 

+ lim Tr234 M;(e; t) (~34(e; t) pl(t). '-p4(t) (5.5) 
g ~ 0  + 

where the prime denotes the derivative with respect to e. For brevity, the 
P's, resulting automatically due to momentum conservation, have been 
omitted. It is obvious that /~1 involves more than two particles [note that 
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the term with M;  actually involves only three particles (like the other 
terms) due to an identity of the type (4.10)]. Therefore, in the considered 
binary collision approximation the time retardation effects can be omitted. 
Finally, as shown in II (see Appendix D there), the first term on the rhs of 
Eq. (5.4) can be transformed identically to a Uehling-Uhlenbeck (3~) colli- 
sion operator form with, however, an exchange-modified, time-dependent 
scattering cross section. Hence, we obtain from Eq. (5.4) the homogeneous 
quantum-statistical Boltzmann equation in the following form: 

f(k~ ; t) = /2(k ,  ; t) (5.6) 

where the two-particle collision integral is given by 

/ '2(k~; t )=4n ~ ](k~k21i~zfe12;t) �89 2 
k2,~1, k2 

X' 0(812-- g I 2 ) { L L ( 1  ~- ~g'l)( 1 -~- ~/2) 

- (1 + t/f~)(1 + qf2)f, f2} (5.7) 

with 

f ,  = f ( l i , ;  t) = <kxl p l ( t ) )~1  ) 

z m  
(5.8) 

etc. The exchange modified t-matrix, defined by 

1 
i~2(E;t)= lira V12 {e+i[Ho(lZ)-E]}  (5.9) 

~.~o+ e+i[i2i(lZ;t)_E] 

is, as stated above, now time dependent through its dependence on the 
distribution operators pl(t) and pz(t) occurring in H(12;t)  [see 
Eq. (4.14)]. Therefore, the collision integral [2 is a complicated functional 
of pl(t) and p2(t) and is not only trilinear in the f ' s  (the quartic terms 
cancel) as is the case in the original Uehling Uhlenbeck equation or in the 
Born approximation of Eq. (5.6). Nevertheless, the equilibrium solution of 
Eq. (5.6) is still given by the Fermi-Dirac or Bose Einstein distribution, as 
is easily checked. 

Finally, we remark that the above form of the Boltzmann equation 
(with the same scattering cross section) was first obtained by Boercker and 
Dufty (16) in a semiphenomenological derivation which is based on a closure 
approximation of the quantum BBGKY hierarchy (32/for reduced distribu- 
tion operators. For a discussion of the exchange-modified t-matrix we refer 
to this work. See also ref. 17 of the same authors, where an ab initio deriva- 
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tion of the linearized version of the above quantum-statistical Boltzmann 
equation is given, which is based on a formal closure of the BBGKY 
hierarchy and on cluster expansions. 

The same ~33) or similar ~34) results as obtained in this section have been 
derived by other authors, too, using the Kadanoff-Baym hierarchy of 
equations of motion for nonequilibrium real-time Green's functions./35~ 

For investigations restricted to second-order approximations (in the 
interaction) of the collision operator see, e.g., refs. 13, 14, and 36. 

6. Q U A N T U M - S T A T I S T I C A L  C H O H - U H L E N B E C K  E Q U A T I O N  

To go beyond a Boltzmann equation description, higher order clusters 
involving more than two particles must be taken into account. In par- 
ticular, the first correction to the two-particle collision integral I2 occurring 
in the Boltzmann equation (5.6) is given by the three-particle clusters G123 
and Rl (the latter describes the first time-retardation correction). As will be 
shown below, G123 together with /~ leads to the quantum-statistical 
generalization of the (semi-) classical Choh-Uhlenbeck collision operator. 

Therefore, considering the generalized linetic equation (4.2) in the 
triple collision and Markovian approximation, thereby retaining the first 
time-retardation correction (the higher order corrections involve more than 
three particles), we arrive at the quantum-statistical generalization of the 
(semi-) classical Choh Uhlenbeck equation 

f ( k  1 ; t) = [2(kl ; t) + ?3(k~ ; t) (6.1) 

[2 is given in Eq. (5.7). The three-particle collision integral is defined by 

? 3 ( k l ;  l )  = l i m  [Tr23G123(~;t) pl(t)p2(t)p3(t)]k,k~+k1(k~;t ) (6.2) 
e ~ O  + 

w i t h / ~ l ( k l ;  t) = (/~l(t))k~kl [see Eq. (5.5)]. In deriving this result, we have 
used similar arguments and assumptions with respect to the Markovian 
limit as in Section 5. 

As already pointed out in the general discussion of Section 4, the main 
feature of i 3 (as well as of ?2) is its renormalized form brought about by 
the quantum statistics. That means the effect of the other particles via the 
statistics on the three-particle cluster is already incorporated in G123 
through the renormalized Liouville operators /2(12; t) and /2(123; t). Due 
to this many-body effect the collision integral ?3 becomes a complicated 
functional of the one-particle distribution operator pl(t), whereas in the 
(semi-) classical case ]3 is only of third order in pl(t) (see below). 

To make the close connection between ?3 and its sere?classical counter- 
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part (i.e., the Choh-Uhlenbeck collision operator) more transparent, we 
shall now rewrite [3 in an alternative form. For that purpose we have 
to eliminate the nondiagonal projector Q~2 occurring in 0123. Hence, 
replacing there Q12 by 1 _p~2 and applying the Pq-rule to the resulting 
terms with p12, we immediately find 

for f2 - .  c~ (6.3) 

n 0 
where Gt2 3 is equal to G~23 but without Q's. In deriving this result, we have 
also used the momentum conservation due to which one has, e.g., 
PGI2P~ 12G13 ~ P = PG12G13P~ ~ (see Appendix B of I). This G~ contains now 
first divergences as e -* 0, coming from successive isolated binary collisions 
(which are excluded in G~23 due to the action of Q). These singular terms, 
however, are exactly compensated by the second term (being proportional 
to e ~) in the above equation. 

Inserting Eq. (6.3) into ,f3, we obtain 

i3(kl, t )=  [~l)(k l ; t) + [~2)(k 1 ; t) (6.4) 

where [u)~t~3 ~-i , ' t )= (k l  I [~)(t)Ikl ), with 

(1 )__  __ 
3 - -  

~ v c  

Jo d~ Tr23 E~2S ~(12; / ) { ( / ~ ' 1 3  "~- [~'23 -~- /~ '12,3)  ~-~--oo (123; t) 

S ~(12; t ) [ /~3S_~(13;  t) +/~23S_~(23; t)] } pl(t) p2(t)  p3(t) 

= - J o  drTrz3L~2S ~(12;t){(L,3+L23 )S  ~(123;t)~ ~23 

- S :~.(12; t)[L~3S :~(13; t)~z ~3 + L23S ~(23; t)~r 23 ] 7~ 12 } 

• p~(t) p2(t) p~(t) 

and 

[~2)(t) = lim 
e , ~ 0  + 

The renormalized "streaming" superoperator is defined by 

S ~(1 .. .s; t ) A  =--_e -'~l;(1 ..... ;'IA 

e -  H/~( 1 . . . s ; t ) A e i r l : l + ( 1 .  , - s ; t )  

(6.5) 

Tr23{M~(~; l) Tr  4 (~34(e; t) P4(t) - M3(e; t)} p,(t) pc(t) p3(t) 

(6.6) 

(6.7) 
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For the second equality in (6.5) we have made use of the identity 

/~13 -1- ff--'23 ~- /~12,3 = (L13 + L23)( 1 -t- g13 "t- 7"C23 ) 

(see Appendix B of II); we recall that ~123= (1 +g12)(1-~7C13"~7"C23 ) and 
~zo=(1 +T r0 ). We have written f~l/ in time space to exhibit its striking 
similarity with a form of the Choh-Uhlenbeck collision operator found in 
classical kinetic theory [see, e.g., Eq. (17.1) of ref. 37]. f~2) is of purely 
quantum-statistical nature, i.e., it vanishes if exchange effects are neglected. 
The first term in Eq. (6.6) results from time-retardation effects, whereas the 
second one compensates the two-particle contributions occurring in the 
term with S oo(123; t) in Eq. (6.5). 

Let us now consider the semiclassical limit more explicitly, i.e., the 
case where the dynamics is still described by quantum mechanics, but 
where the particles obey classical Boltzmann statistics. Since this case has 
been studied by R6sibois in detail within the Brussels formalism, we shall 
be very brief. First we note that in this limit d~ .... (e; t) [C~ ~ ..... (e; t), resp.] 
obviously reduces to G1 ..... (e) [Gl ~ ..... (~), resp.], where G1 .... (5) is equal to 
G1 .... (e) [see Eq. (3.15)], but with Q's in place of 0's.  Therefore, the semi- 
classical limit of f3, denoted by I3 becomes (f(2) vanishes) 

Wr2  : 

• pl(t) p2(t) p3(t) (6.8) 

which agrees with the expression obtained by R6sibois. (25) As shown by 
R6sibois, (25'26)'3 Eq. (6.8) can be further transformed, with the result 

I 3 ( t ) = -  lim Trz3iL~2{S_~(123)-S ~(12)l-S ~(13)+ S ~(23)] 
r ~ o c  

+ S ~(12)} p~(t) pa(t) p3(t) (6.9) 

where S , ( 1 . . . s ) = e  i~Lt~ .... 1 The rhs of the foregoing equation 
represents the semiclassical extension of the classical Choh-Uhlenbeck 
collilsion operator/3~/ Therefore, the kinetic equation (6.1) indeed 
represents the quantum-statistical generalization of the Choh Uhlenbeck 
equation. For a further discussion of 13, we refer to the literature. (25 27,38) 
Let us only note here that R6sibois C25) has shown that, when bound states 
are excluded, 13 cannot be expressed in terms of a probability transition 
](it t ( E i ) I f ) 1 2 2 ~ 6 ( E i  - Ez) between an initial state i with energy E~ and a 
final state f (energy Ej), since this probability is diverging when there are 

3 Note that on the rhs of Eq. (9) in ref. 26 a term i~-/~21(0) is missing. 
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more than two incident free particles. As a consequence, I3, as well as f3, 
cannot be cast into a Boltzmann-like collision operator form (for the classi- 
cal case see also ref. 39). This seems to be in conflict with ref. 34, where a 
quantum triple collision integral in terms of a probability transition of the 
above form is given, a result which seems not to be obtainable in the pre- 
sent formalism, at least not in a consistent triple collision approximation 
considered here. 

Finally, Jet us note again (see also section 4) that, in the asymptotic 
time regime, it is not possible to write clown kinetic equations including 
s-particle collision terms where s >  3, since in the Markovian limit these 
higher order collision integrals diverge due to the quantum-statistical 
analog of the ring events. Therefore, if one is interested in transport equa- 
tions involving more than three-particle processes, it is necessary to per- 
form further partial resummations in the renormalized cluster series on the 
rhs of the generalized kinetic equation (4.2). Only then one can hope to get 
better defined expressions in the long-time limit. Such a procedure, for 
instance, is very likely to be carried out if one tries to find quantum-statisti- 
cal generalizations of the classical repeated ring equations (9'4~ in which 
many-body dynamic correlations are incorporated. We believe that the 
present formalism, especially the renormalized kinetic equation (4.2), is a 
suitable starting point for investigations directed at this aim. 

A P P E N D I X  

In this Appendix we derive Eq. (4.2) together with (4.4), starting from 
Eq. (3.18). In II [see (II.3.46)] we have shown that G1 ..... (e)Tr ~ .... given in 
(3.15) can be rewritten as [replace i by - i  in (II.3.46)] 

a l  . . . .  ( ~ )  7~1 . . . .  

1 1 
= ( - -1) ' -  1 i/~q2 iQl2(s + La3 + s 

e + iL(12) e + iL(123) 

1 
x iQ123(/~14 + s +/~34 +/~12,4 +/~13,4 -~- f~23,4) 

1 
X ~" 

+ iL(1 . . . s - -  1 

e + iL(1 . . .4)  

•  --t(/~ls_l_ .. + / ~  1.s + .... ~ L,J,,) 
l ~<i<j_<,-i e + iL(I .- .s) 

(h.1) 

when applied to a symmetric operator A. The /~12, /~q2,3, etc., are defined 
in Eqs. (4.5) and (4.6). Note that in (A.1) only the unsymmetrized projec- 
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tors Q~ ..... ' occur. The objective now is to collect all k-particle contribu- 
tions occurring in 

Tr2 .... P~ .... G~ ..... (e)~ ~ .... p1 .... P l (O '"Ps( t - ) ,  ( [ = - t - t ' )  (A.2) 
s=2 

and to resum them. (For brevity we suppress in the following the time 
arguments.) The first step of this procedure has been discussed in Section 4 
of II. For the sake of completeness and for notational reasons, however, 
this step is treated here again. 

To find all binary collision contributions in (A.2), we note that, accor- 
ding to Eq. (4.10), the superoperators/7,12a can be reduced to a two-particle 
term which contains only V12. In the first step, we therefore retain in (A.2) 
all L12, /S,12, and L12,1 (3 ~< l~< s) and the Lo's, which reduce then to L0(12), 
since Lo(12-.. s ' ) P  3 .... = L0(12)P 3 .... (2 ~< s' ~< s). We then obtain 

~ T r 2  1 �9 12- 1 (--1)s--'i/~,12 tQ L12,3 
s=2 ..... 8 + iL(12) e + iL(12) 

1 
�9 12- E12s p l  

x i Q  L~2 ,4e+iL(12)  ' e+iL(12)  ..... P ~ ' P ~  

= - -  L 8Wr 2PtaiE12 1 ( i~,28 - 1  )s-2  
s=2 e + i L ( 1 2 )  + iL(12) p12p~P2 

1 1 
= - e Trz PlZiff,12 p~2plp2 

e+iL(12)  l+ iL~2{1/ [e+iL(12) ]}  
1 

=- - e Tr2 p12iL12 pl2plp2  (A,3) 
+ is 

where we have used Eqs. (4.8)-(4.10), the fact that Q1 .... 'p3 .... = Q12p3 .... , 
and the Pq-rule, due to which the Q's can be omitted (the p12 part in 
Q12= 1 _p12 leads to a vanishing contribution for (2-~ ~) .  Then (A.3) 
gives the s = 2 term in Eq. (4.2). 

Analogously, in a next step, we collect all triple-collision terms in 
(A.2), by considering the particles 1, 2, and l (2 < l ~< s) and by retaining all 
L12, Ll l ,  L2l, ff-'12, Ell, ff-'2l, /~12,j (2 <j~<s),  Eu,~, and tZl, k ( l < k < , s ) .  This 
yields 

L L - 1 i,q12F 1 
l=3 Tr2 . . . .  p l  ..... ( _  l )S- liL12 a + iL(12 ) ~12,3 8 + iL(12) s ~ 2  

1 1 
it312r iQ 'e (EI I -~  L21-~ ff-'12,/) iQ 12l 

x -.. z , ~2 . t - l e+ iL (12 )  e + i L ( 1 2 l )  

1 
X (l~12, l + 1 -{- Lll, l+ 1 + L2l, l+ 1) 

e + iL(12l) 

itO12l( F 8 
• "'" ~ ~12.~+Ll l ,~+E2t ,  s) e+iL(121)  PI ...... P l " " P ~  
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L s 
=8  ~ Tr2l p~2/(_ 1)~_ ti/7t2 1 

e + iL(12) s=2 /=3 

x iQ~ZLt2 +i~(12) iQ~2(Ltt+L2,+Et2j) e+iL(12l ) 

[ 1 ]'-' 
• iQl2l(L12 + LII+ L2t) P~2~plP2Pl 

+ i/L(12/)J 

= (--1) 28 Tr23 p123iEt2 1 i~,12 
l=3 ,=t  s + /L(12)  s + iL(12) 

1 
x iQi2(/713 +/7-'23 "q- J~12,3) a + iL(123 ) 

X [i(L12 _t_ El3 @ ~_~23) --1 j]s-I g+iL(123 Pt23PlP2P3 

1 1 
= (--1)28 Tr23 pl23i/712 

8 + iL(12) 1 + iLl2{ 1/[8 + iL(12)] } 
1 

• iQX2(E13 + I723 + L12,3) 
e + iL(123) 

l 
X p123piP203 

l + i(/~,2+/~t3 + L23){1/Es+ iL(123)]} 

1 
= (--  1)28 Tr23p123i/712 iQ12(/713 +/723 +/712,3) 

e + is 
1 x p123plpep 3 (A.4) 

e + is 
In order not to overcount the two-particle contributions, which have 
already been taken into account in (A.3), we must subtract the term 
Trz3plz3M3(e; t)p123plP2P3 [see Eq. (4.12)] from (A.4), since this term 
contains only the particles 1 and 2 due to Eq. (4.10). This then leads to the 
s = 3 term in Eq. (4.2). 

It is now clear that  one can proceed for the 4-, 5-, .... particle contribu- 
tions in exactly the same way, thereby arriving at Eq. (4.2). 

Finally, we remark that, by reversing the steps leading from (3.15) to 
(A.1), G1 .... given in Eq. (4.4) can also be written as 

1 1 
G1 .... (8; t) = ( --1 )~- liL12- iQ~2(L13 + L23) 

e + i/~(12; t) 8 + i/~(123; t) 
1 

x --. iQ 1 ...... 1(L1s+ . . .  +L~  1,) 
e +  i/~(1 . - . s -  1; t) 

8 
x ~t I .... - ( - 1 )  "-1 M,(8; t) (A.5) 

8+  is . .-s;  t) 
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By comparing this form with (3.15), the effect of the renormalization proce- 
dure becomes evident (see also Section 4). 
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